发动机机体的轻量化技术

发布时间:2017-05-19

为了减少燃油消耗和降低二氧化碳排放,汽车的轻量化已经成为众所关注的焦点之一。研究表明,汽车整备质量.每减少100 kg,百公里油耗可降低0.3~0.6 L。此外,汽车轻量化还可以提高汽车动力性,节省材料,降低成本。有人预计,到2010年汽车整备质量平均将减轻17%,即250 kg;轿车整备质量将从目前的平均1300 kg左右降至1000 kg。

发动机的轻量化,除了上述目的以外,还涉及到整车的质量分布(汽车行驶动力学)。将汽油机改换成柴油机时,往往会使发动机变重(坚固的结构、涡轮增压器、增压空气冷却器、喷油装置等),导致前桥轴荷增加,使得整车的均衡性受到了破坏。所以,轿车发动机的轻量北已经成为整车开发中一个不可忽视的问题。

发动机轻量化的途径,首先是提高升功率,以降低发动机单位功率的质量。最先进的功率密度指标已逼近1 kg/kW 。以轿车柴油机为例,如果20世纪90年代初升功率还只是在20-30 kW/L徘徊,那么自从20世纪末开始,其上升趋势可谓“突飞猛进”。如今,柴油机最大爆发压力已经达到20 MPa,升功率达到60 kW/L。

铝合金机体铸造工艺的讨论

铝合金机体的铸造工艺从原理上可以分成多次使用的铸型(金属型)和一次使用的铸型(砂型)。砂芯的制造方法也有所不同。当今在大批量生产中最为常用的是砂型重力铸造和压铸。砂型重力铸造在成型方面提供了最大的自由度,可以采用封闭的气缸盖连接面(闭式顶板)。如果生产件数较高(年产20万件以上),那么压铸是一种经济的解决方案。压铸能以很短的节拍、精细的表面质量和精确的尺寸实现铸件薄壁结构。然而,由于熔融金属充型压力很高不能使用砂芯,水套通常必须往上敞开(开式顶板)。这意味着气缸筒缺乏径向的支撑。但是,即使如此也未必会导致气缸筒严重变形。现在,甚至直喷式柴油机都可以做成开式顶板结构。此外,压铸快速的充型过程易导致气泡的生成,以致无法通过热时效硬化改善力学性能。这个缺点可以利用挤压铸造加以避免,因为这种工艺采用的压力较低,使得充型过程明显地减缓,有可能进行补缩。此外,压铸对于水套的长度有着间接的影响。由于气缸直径、拉杆螺栓的位置、密封法兰最小宽度以及必需的通常为0.5°的起模斜度等因素,实际制成的压铸机体的水套通常至多只能覆盖活塞行程的70%。这会降低通过活塞环的热流量,提高机油的热负荷。在机体结构方面,压铸有一些局限性。不过这些均可通过技术手段加以控制。机体是否采用压铸的工艺,首先还是取决于生产批量。

对于高负荷发动机来说,选择砂型铸造更能通过合适的造型工艺、合金优化和热处理来生产可靠、耐久的发动机机体。从零件成本看,充分利用砂型铸造在成型方面较大的自由度,还可以将各种功能整合到气缸体中去,在总体上减轻质量,提高经济效益。

铝合金机体结构必须解决的问题

灰铸铁气缸体改用铝合金铸造,必须满足一些额外的要求,分述如下

1确保气缸筒滑移表面耐磨,不易变形

2满足传递力流的要求

3控制主轴承间隙的扩大

4铝合金较低的弹性模量对声学和振动的影响

发动机机体通过材料和结构实现轻量化的途径

1针对气缸筒滑移表面的措施

2确保力流传递和控制主轴承间隙的措施

3确保结构动态特性的措施

性价比分析

对分别采用灰铸铁、蠕墨铸铁、铝合金制造的2.0 L 4缸发动机进行了性价比分析,结果如表1。

按照年产40万件计算,则采用蠕墨铸铁时,成本提高38%,毛坯成本和机加工成本以相同的程度提高;采用铝合金机体时,成本提高62%,主要是材料价格较高。铝合金在机加工方面的成本优点由于多种混合加工而被大大削弱了。

性价比分析表明,铝合金结构具有较大的潜力。只有当总体布置非常紧凑(气缸中心距较小)时,蠕墨铸铁所拥有的优势的材料性能才会突现出来。